
Inferring biotic interactions from
proxies
Ignacio Morales-Castilla1,2, Miguel G. Matias1,3,4, Dominique Gravel5,6, and
Miguel B. Araújo1,3,7
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Review
Inferring biotic interactions from functional, phylogenet-
ic and geographical proxies remains one great challenge
in ecology. We propose a conceptual framework to infer
the backbone of biotic interaction networks within re-
gional species pools. First, interacting groups are identi-
fied to order links and remove forbidden interactions
between species. Second, additional links are removed
by examination of the geographical context in which
species co-occur. Third, hypotheses are proposed to
establish interaction probabilities between species.
We illustrate the framework using published food-webs
in terrestrial and marine systems. We conclude that
preliminary descriptions of the web of life can be made
by careful integration of data with theory.

Why infer interactions?
Even if serious gaps in knowledge of biodiversity remain,
much progress has been made in determining how many
different types of organisms exist (the Linnaean shortfall
[1]), what evolutionary relationships connect different
lineages to a common ancestor (the Darwinian shortfall
[2]), and where different species are distributed (the Walla-
cean shortfall [3]). Much less is known about the types of
interactions that exist among species (the Eltonian shortfall
[4]) and the importance of such interactions for the mainte-
nance and evolution of life on earth. One reason why the
Eltonian shortfall is so prevalent is that detection of direct
and indirect interactions requires significant empirical
efforts, even in simple systems. For example, identifying
direct species interactions within an ecosystem with only
seven species would require accounting for 42 potential links
and up to 13 650 links if indirect interactions are considered
[5]. Given that most systems have more than seven species,
documenting all biotic interactions at any site (let alone
across the world) would be a considerable undertaking.
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Furthermore, the widespread idea that biotic interactions
affect ecological processes mainly at local scales of resolution
and extent [6–8] has discouraged researchers working at
biogeographical scales from addressing them: why deal with
biotic interactions if they do not contribute to understanding
the bigger ecological picture? Recent evidence, however, has
shown that biotic interactions can affect species ranges [9–
11] and co-distribution of species [12] at regional to conti-
nental scales, thus potentially mediating biological
responses to environmental changes [13]. There is a demand
for predictions about the dynamics and functioning of novel
ecosystems emerging from differential responses of species
to global changes [14,15]. Because determining the nature of
all interactions among species is currently beyond reach, the
development of a methodological framework for inferring
interactions from proxies is timely.

Can biotic interactions be inferred? It has been argued
that the study of pairwise interactions between species has
failed to provide general principles about the dynamics and
organization of communities [16], but the recent upsurge of
interest in ecological networks [17] is gradually changing
this perspective. We propose that, if appropriately ana-
lyzed, existing data on functional traits, geographical dis-
tributions, and phylogenies provide a starting point for
making predictions about the likelihood of pairwise biotic
interactions among species and the general properties of
the interaction networks. The proposed framework is com-
plementary to empirical approaches for network construc-
tion (wherein links are established only after observations
are made [18]), and can be useful when empirical data on
interactions are not accessible. Our approach generates
the backbone of an interactions network that can be used to
remove forbidden interactions and to identify plausible
links among species in a given regional species pool.

Which interactions to infer?
There are many different ways to describe a biotic inter-
action. Interactions may vary in their type (e.g., antago-
nistic or facilitative), their strength (e.g., weak or strong
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Figure 1. Inferring biotic interactions from proxies and testing them with two examples of food-webs from the Serengeti grassland ecosystem (A–E) and from Cuban coral

reefs (F–J). The examples differ in the numbers of species and geographic realm but are comparable in scales of extent because data were pooled across large regions

(>25 000 km2). Whereas the first example comprises 161 species inhabiting the Serengeti National Park, (north of Tanzania), the second comprises 265 species found in all

Cuban coral reefs within the 100 m depth platform surrounding the island. By applying three nested successive constraints the number of potential links was reduced by

more than two-thirds. The first step involved assigning species into three major trophic groups (B,G): carnivores (red circles), herbivores (dark-green circles) and primary

producers (light-green circles). The second step involved classification of consumer species based on their diets (C,H). The third step involved refinement of groups by

accounting for the geographic location of species or by establishing where producer species feed in environmental space (D,I). The trophic structure of the two examples is

reversed, with more diversity of primary producers in the Serengeti. Even so, the ability to remove forbidden links and match empirical food-webs is similar (i.e., 66.49% for

the Serengeti and 67.74% for the Cuban coral reef).
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interactions), or their symmetry (e.g., symmetric or asym-
metric). An important step for inferring biotic interactions
is to determine what information is to be inferred. We
propose building interaction networks bottom-up, in other
words predicting the links among species and then explor-
ing the collective properties of the networks (e.g., connec-
tance, degree distribution, or distribution of motifs) that
emerge from these links (see also [13]). In the proposed
framework, four key metrics are the focus of inference:
(i) The probability of occurrence of a link

The first step is to infer whether an interaction
between any given pair of species is possible. Many
species co-occur without interacting with each other
[4] and, although detection of links is the focus of
much research in community ecology, predicting if a
link is absent is of equal importance. Forbidden
interactions, such as small fish eating big fish or
grassland herbivores eating leaves in trees, can be
348
easily identified – thus helping to remove links from a
full set of candidate links. Such a procedure of
pruning forbidden links from potential networks of
interactions helps to limit the scope of inference to
possible interactions alone (Figure 1). After removing
the forbidden links from the tree, the next step is to
calculate the probability with which possible links
occur using a combination of data that can include
traits, phylogenies, and geographical/environmental
features [19].

(ii) The type of interaction
Once a link between two species is deemed probable,
the next step is to determine the expected type of
interaction involved (e.g., antagonistic, facilitative,
direct, or indirect). Such inference is not always
straightforward. Of the myriad of interactions in
nature, not all are equally prevalent and not all are
equally detectable. Variation in the prevalence and



Box 1. Are all biotic interactions equally prevalent in nature? Can they be predicted from co-occurrence?

Four broad types of biotic interactions can be distinguished based on

whether the net effect of the interaction on each interacting species is

detrimental for both of them [i.e., competition (�,�)], beneficial for

both of them [i.e., mutualism (+,+)], positive for one species and

negative for the other [e.g., predation or parasitism (+,�)], or positive

for one species and indifferent for the other [i.e., commensalism

(+,0)]. Less common is when one interacting species is indifferent

while the other is negatively affected [i.e., amensalism (0,�)].

Quantification of the prevalence of the different types of interactions

in nature is still lacking, but have they received similar treatment in

the literature? A review of the literature of the past two decades

reveals that antagonistic interactions (e.g., competition and preda-

tion) have been the focus of more than three-quarters of all published

studies on biotic interactions (Figure I). These studies often refer to

biotic interactions generically, even if only one interaction type –

typically competition – is addressed [58].

Why are antagonistic interactions so popular in the ecological

literature? (i) Is there evidence that certain types of biotic interactions

are more important than others in controlling for the dynamics of

species, communities, and ecosystems? (ii) Are antagonistic interac-

tions easier to detect in the field than facilitative interactions? (iii) Are

antagonistic interactions more prevalent? Answering these questions

requires a comprehensive comparative analysis across all types of

biotic interactions. Such analysis is not feasible given the lack of

systematic descriptions of biotic interactions across taxa and regions.

But simulations may offer an alternative. For example, a recent study

provided the first comprehensive simulation of the expected co-

occurrence between two species arising from all possible combina-

tions of direct biotic interaction types [20]. The study shows that

similar co-occurrences can be achieved by different interactions,

leading to the conclusion that co-occurrences alone are not sufficient

to provide insight into the biotic interactions generating them (e.g.,

[20]) (Figure II).
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Figure II. Interaction strength and probability of co-occurrence. Co-occurrence probability between two different species across biotic interaction space. Biotic

interaction space is a representation of all possible types of interactions across two axes, each indicating the direction and the strength of the interaction for each

species. Examples are for (A) predation of Oryctolagus cuniculus by Lynx pardinus, (B) hervibory by Odocoileus virginianus, commensalism by (C) Remora brachyptera

and Carcharhinus melanopterus, (D) epiphytic bromeliad (fam. Bromeliaceae), and (E) Amphiprion percula and Entacmea quadricolor; examples of mutualism for (F)

shelter-defense interaction between Pseudomyrmex ferruginea and Cecropia peltata, of (G) pollination of Helicornia caribaea by Eulampis jugularis and of (H)

pollination of Stenocereus thurberi by Leptonycteris curasoae; competition between (I) Panthera leo and Crocuta crocuta and between (J) Swietenia mahagoni

individuals; amensalism produced by (K) Penicillium expansum, and parasitism of (L) virus of genus Ebolavirus and (M) Anopheles gambiae mosquito, which is itself

host for Plasmodium falciparum.
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Figure I. Published studies on biotic interactions since 1991 categorized by

interaction type. Search performed with the Web of Science including the terms

‘ecology’ AND ‘interaction’ AND ‘interaction type’. Colored sector, proportions

by interaction type; white line, total number of publications.
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detectability of interactions partly explains why
different interactions have received different atten-
tion. For example, in the past 20 years competition
attracted �50% of all citations in the biotic interac-
tions literature, with commensalism and amensalism
being almost residual (Box 1). Species can also
interact in more than one way, making the classifica-
tion of interaction particularly complex. For example,
barnacles facilitate the establishment of mussels in
the rocky intertidal, while simultaneously competing
with them for space. Whether +,� versus �,�
interactions are prevalent will depend on the net
effect of the interactions, which will in turn determine
the resulting pattern of attraction or repulsion
[20]. Focusing on easily inferable direct interactions
as a starting point (e.g., predator–prey interactions)
can help because it will resolve the major interacting
groups of the network.

(iii) The strength of the interaction
The direct effect that species have on each other’s
demography is termed interaction strength. Deter-
mining the strength of interactions between species is
essential to understanding network dynamics, stabil-
ity, and robustness [21]. Approaches for measuring
strength of interactions will vary with the specific
types of interactions involved. Whereas interaction
strength in a plant–pollinator network can be
measured based on the frequency of visits between
species pairs [22], in a food-web it can be measured by
the amount of energy ingested by the predator
[23]. More generally, interaction strength can be
measured as the total effect of a population on
another ( per population) or the effect of each
individual of a population on another ( per capita).
Most attempts to estimate strength of interactions in
the field will mix both. We focus here on the strength
of interactions at the population level.

(iv) Asymmetry of interactions
The degree to which the strength of the interaction
between two species differs between the two is termed
asymmetry. Interactions are generally asymmetric
[13,22,24] such that if one species A depends strongly
on species B, then species B depends weakly on
species A. For instance, plants and pollinators vary in
their degrees of mutual dependence, with pollinators
being typically more specialized than plants [22]. An-
other example is provided by predator–prey interac-
tions, wherein only a fraction of the prey biomass
consumed by the predator is converted into predator
biomass. Failure to acknowledge these asymmetries
will necessarily lead to overestimating the impor-
tance of particular links.

How to infer interactions?
The proxies used in inference

When direct information about biotic interactions is un-
available, we must resort to indirect information or proxies
to obtain insight about them. Three classes of proxies can
help with inferring interactions between species: traits,
phylogenies, and geographical data (for a review of examples
see Table 1). Traits are usually defined as morphological,
350
physiological, phenological, or behavioral characteristics of
species that directly impact on their fitness [25]. However,
they are also expected to influence how species interact with
one another. When information on traits is unavailable, or is
incomplete, one option is to use phylogenies measuring
evolutionary relationships among species as a surrogate
for trait similarity. This approach is useful provided that
there are phylogenetic signals in the traits of interest
[26]. Strong phylogenetic discrimination is more likely when
lineages are examined across broader geographical scales of
extent or large environmental gradients, but strong discrim-
ination is insufficient to guarantee the existence of strong
phylogenetic signals between lineages and the traits of
interest. Finally, in addition to information on traits, the
geographical co-distribution of species, complemented with
analysis of species–environment/species–habitat relation-
ships, can also be considered.

The three classes of proxies are not expected to provide
equally valuable information (Table 1). Traits ultimately
determine if a given interaction is probable, or even possi-
ble, because they mediate biotic interactions among spe-
cies and the interactions between species and the
environment. For example, different species might occupy
a particular microhabitat differently, and habitat occupan-
cy can determine whether they are likely to compete for a
particular resource. When trait information is lacking,
phylogenies and geography can help to fill the gaps; for
example, by determining which species are likely to co-
occur in the same parts of the world. We illustrate below
how these proxies (e.g., body size, abiotic requirements,
phylogenetic distance, spatial co-occurrence) can be uti-
lized to infer species interactions.

Building the backbone of interaction networks

We propose a hierarchical approach to infer biotic inter-
actions from proxies that is analogous to reconstructing
large phylogenies based on collating smaller phylogenies
on the top of a structuring backbone (i.e., ‘super-trees’ or
‘meta-trees’). Broad groups of interacting species would,
ultimately, form a ‘super-network’ or ‘meta-web’ of inter-
actions. The analogy with a super-tree or meta-tree is not
new because it is implicit in the compilation of several
networks of interactions [27], but it formalizes what is
typically done for network construction.

The procedure for building the backbone of an interac-
tion network starts with the identification of species more
likely to share similar interactions. The concept is similar
to that of modules [28], but we avoid this terminology
because modules are usually determined a posteriori and
can also refer to simple assemblages of species such as
linear food chains or apparent competition [29]. Instead,
we define interacting groups based on a priori expectations
of interactions. The concept is also analogous to that of
guilds [30]. Guilds, however, are restricted to species shar-
ing similar resources, and thus do not encompass non-
consumptive interactions such as competition or niche
construction [27]. A flexible definition of interacting groups
based on traits, phylogenies, and geographical distribu-
tions would enable combination of heterogeneous informa-
tion. Such flexibility can be crucial when inferring
interactions with information that is not required across



Table 1. Examples of proxies (traits, phylogenies, and geography) used in inferences of biotic interactionsa

Interaction type Traits Phylogeny Geography

Mutualism

(+,+)

Functional composition of subalpine

grasslands is related to facilitation when

resources are scarce [59]*

Behavioral trait composition can turn the

interactions of spider Anelosimus

studiosus into mutualism or

commensalism [60]*

Flower size can determine the number of

pollinator species [61]**

Phylogenetic history plays a relevant role

in structuring plant–animal mutualistic

networks [62] and could be used to

predict co-extinctions [54]***

Distribution of woodpeckers improves

species distribution models of boreal

owls [10]***

Positive co-occurrence can be used to

infer facilitative interactions [63]*

The probability of geographic co-

occurrence is higher for (+,+) interactions

[20]*

Predation

/parasitism

(+,�)

Body size is a determinant of consumer–

resource interactions in aquatic food-

webs [64–66]***, and can also determine

interaction strength [67]***

Shifts in body size affect type and

strength of predator–prey interactions

[68]*

Body temperature can have major

implications of our understanding of

how thermal stress modulates predator–

prey relationships under field conditions

[69]*

Phylogenetic data has commonly been

used to infer predation in paleontological

data [70]***

The phylogenetic signal in host range

can be used to predict which plant

species are likely to be susceptible to a

particular pest or pathogen [71]***

Phylogeny as a proxy for unmeasured

trait information explains much of food-

web structure [67,72]***

Spatial distribution can affect disease

interactions for the foot-and-mouth

livestock disease [73]**

In very specialized predator–prey

interactions, prey geographic

distribution might enhance predictions

for the distribution of the predator [48]*

Competition

(�,�)

Functional composition of subalpine

grasslands is related to facilitation when

there is no resource limitation [59]*

The prevalence of competition versus

environmental filtering can be inferred

based on functional traits [74]**

Plant interactions turn from facilitation

into competition with increasing

phylogenetic relatedness [75]*

Competition is assumed in community

phylogenetics when communities are

overdispersed [76,77]**

The prevalence of competition versus

environmental filtering is not affected by

phylogenetic relationships for tree

species [74]**

Pairwise negative residual spatial co-

variation indicates potential competitive

interactions [78]**

Negative co-occurrence patterns can be

used to infer competitive interactions

[63,79]*

Commensalism

(+,0)

Behavioral trait composition can turn the

interactions of spider Anelosimus

studiosus into mutualism or

commensalism [60]*

Phylogenetic relationships do not seem

to affect network structure in an

epiphyte�phorophyte network [80]*

Host plant distributions can improve the

distribution model for the butterfly

Parnassius mnemosyne [9]***

Species abundance, species spatial

overlap, and host size largely predicted

pairwise interactions and several

network metrics [80]*

Amensalism

(�,0)

Behavioral trait composition can be

related to amensalism of spider

Anelosimus studiosus with interacting

species [60]*

aThe scales at which examples were conducted are annotated as follows: local scale including lab experiments and simulations (*); regional scale (**); and biogeographic or

global scale (***).
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all species (e.g., foliage chemical defense compounds are
not relevant to infer predator–prey interactions).

To illustrate the implementation of these ideas, we infer
the backbone of food-webs for two ecosystems: the Serengeti
[31]; and the Cuban coral reef [32] (Figure 1). Interacting
groups of species are defined a priori to simplify the removal
of forbidden links. The groups were defined based on the
trophic hierarchy of the different species within each eco-
system (e.g., primary producers, grazers, small and large
carnivores). This process of trophic classification of species
led to identification of forbidden links and removal of �30%
of all potential direct links in the coral reef, and �22% in
the Serengeti (e.g., herbivores eating predators; Figure 1).
Refinement of the species groupings was achieved by con-
sidering the characteristics of the consumer species (e.g.,
distinguishing small versus large carnivores in the Seren-
geti example, or separating invertebrate feeders, omnivo-
rous, and carnivorous fish in the coral reef example;
Figure 1). Geography was then used to subdivide the pro-
ducer groups, defining environments where only particular
consumer species feed (e.g., grassland, woodland, and
shrubland are differenced in the Serengeti, and coral reefs
and seagrasses are distinguished in the Cuban network).
This step led to a reduction of up to 50% for the remaining
links (Figure 1). Notice that the proportion of links removed
by the implementation of the framework was similar despite
351
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Figure 2. Overview of the hierarchical framework to infer biotic interactions from proxies. (A) Constrained matrix after removal of forbidden links based on trait information.

(B) Constrained matrix after removal of forbidden links based on geographical considerations. (C) Filtering of the matrix based on estimated probabilities of interaction (see

below) derived from traits, phylogenies, and/or species geographical distributions. (D) Comparison of the inferred interaction matrix against the actual (observed)

interaction matrix to evaluate the accuracy of the inference. (E) Probabilities of interaction between groups are derived from the following predictions. P1: The strength of

competitive interactions between two species is inversely related to their proximity in trait or phylogenetic space. Functionally similar, or closely related, species are more

likely to compete with each other. P2: Closely related species are more likely to share interactions with other species than distantly related species. P3: The probability that a

species predates on another in particular food-webs (i.e., marine food-webs) is likely to increase with an increase of their body-size ratio. P4: The more similar the ecological

niches of two species, the greater the probability that they will co-occur and hence the higher their interaction probability. P5: Related to P4, interactions will also affect co-

distribution. The current understanding of co-occurrence is that negative interactions will generate repulsion; positive interactions aggregation and exploitative interactions

(+,�) will generate asymmetric co-occurrence (where one species is most often associated to the other, and the other one less often). P6: Interaction strength will be

proportional to the product of relative abundances of the two species (neutral expectation).
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the distinct nature of the ecosystems and the reversed
structure of the trophic networks (Figure 1).

There are few attempts in the literature at using trait-
matching constraints to infer links. For example, Gravel
et al. [25] used predator–prey body-size relationships to
calibrate the niche model [26] and infer potential preda-
tor–prey interactions among pelagic Mediterranean fishes.
Eklof et al. [33] showed that usually fewer than five dimen-
sions were required to represent the structure of 200 net-
works of different types. When direct measurements of
traits are unavailable, latent traits or phylogenetic infor-
mation can also be used [27]. The ability to establish empir-
ical relationships between traits (measured trait, latent
traits, or phylogenetic relationships) and interactions will
be key to predicting whether different species coming into
contact will interact or not. This would be the case when
spread of exotic species leads them to colonize new environ-
ments or when species shift their ranges in response to
climate change.

Even though we illustrated our framework with exam-
ples of food-webs (Figure 1), the procedure is general and
can be applied to other types of interactions. For example,
after direct trophic interactions are mapped into the back-
bone of the network, potential indirect interactions, such
as exploitative and apparent competition [34,35] or trophic
cascades [36] can be inferred [27].

We note that theoretical [37] and experimental [38]
studies have shown that pairwise interactions and net-
work structure can be constrained by the environment, and
this leads to significant spatial variability in network
352
structure [39]. In addition, phylogenetic signals in net-
works can increase with increasing environmental stress
– as shown by parasitoids narrowing their host-genotype
niche breadth when temperature increases [40]. Further
studies will need to address the relationship between the
environment and network structure because it is essential
to predict feedbacks among species co-distributions, biotic
interactions, and environmental change.

Assigning interaction probabilities

Identifying forbidden links in a network is relatively
straightforward compared to the more subtle exercise of
assigning probabilities of interactions between species. The
null expectation is that, all other things being equal, the
probability of interaction between two species is given by
their prevalence (i.e., the proportion of an area occupied by
the species in a given geographical region) [20,41]. Depar-
tures from this null expectation should arise whenever
interaction strength between species is different from zero.
In such cases, traits or the interaction between traits and the
environment should modulate interaction probabilities be-
tween species, thus helping to refine the prediction of links
between species within the backbone of the interactions
network (Figure 2).

Given that probabilities of interactions depend on the
strength of the interactions between species, and their
asymmetry, calculating these metrics is important. The
strength of interactions between pairs of species can be
inferred, indirectly, from theoretical models or, directly, by
field or laboratory experiments. Examples of the latter



Box 2. Refining the backbone of an inferred interaction network by assigning probabilities and testing inferred interactions

Estimating probabilities of interactions between pairs of species is

challenging, but using proxies coupled with simple sets of hypoth-

eses, or rules, can help (see Figure 2 in main text). As an example, we

use a simple allometric hypothesis to infer the probabilities of

interaction for a subset of mammalian species from the Serengeti

food-web and fish species from the Cuban coral reefs food-web.

Following the procedure described in Figure 1 in main text, we

removed forbidden links from the full matrix of potential interactions

(Figure IA,B,F,G). Next, we removed unlikely interactions based on

inferences of probabilities of interaction between pairs of species in

the interaction matrix (Figure IC,D,H,I). To compute probabilities we

used a modification of the niche model of food-web structure [81] and

considered body size as a main niche axis. We fitted a probabilistic

function describing the relationship between predator–prey body

sizes (describing the optimum and the range of predator niches) and

used it to infer interaction probabilities across all pairs of predator

and prey species. We parameterized the model with the observed log-

sizes of predator and prey species based on the realized interactions.

We show in Figure IC,H the probability density function across

different values of predator–prey body-size ratio for an average

predator. We fitted the model to a subset of the data and assigned a

probability to each remaining link to obtain the inferred matrix of

interactions (Figure ID,I). Although we restrict this example to

allometric relationships, additional hypotheses (e.g., phylogenetic

distance, niche distance; see Figure 2 in main text) could be

incorporated as subsequent steps). Once interactions are inferred,

testing of inferences is carried out against observed interactions (E,J).

In this example we show how pruning of forbidden links coupled with

a simple model to infer probabilities of interaction contributed to

decrease the false-positive error rate, while leaving false negatives

relatively unchanged (Figure II). Although the fourth step involving

inferences of probabilities of interaction based predator–prey body-

size relationships did not enhance the inferences for the Serengeti

mammals (Figure IIA), it did slightly improve accuracy for Cuban coral

reefs (Figure IIB). Failure to reduce false positives in the Serengeti

implies that different hypotheses might be necessary to guide the

assignation of probabilities.
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Figure II. False-positive and false-negative error rates achieved in different steps

of the implementation of our framework. (A) Serengeti; (B) Cuban reef.
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Figure I. Predicting probabilities interactions for a subset of 32 mammal species of the Serengeti (A–E) and for 116 fish species present in the Cuban coral reefs dataset

(F–J). Forbidden links are initially removed by grouping species based on their trophic level, their traits (size or diet) and their geography (B,G) (as for Figure 1 in main

text). Probability density functions for predator–prey body-size ratios (C,H) are then applied to estimate the probability of interaction of each link in the inferred matrices

(D,I). Finally, inferred matrices of interaction are compared against the observed interactions (E,J). (see Figure 2 in main text).
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have involved examining the role of species in mutualistic
networks [42], or changes in the structural complexity of
the habitat [43,44] in parasitoid–host networks. Predator or
competitor removal experiments [45] have also provided
estimates of per population interaction strength; per capita
interactions would then be estimated providing that the
predator density is known. Mass-balance models can also be
used to estimate interaction strength. For example, de
Ruiter et al. [46] parameterized Lotka–Volterra equations
based on prior identification of trophic links in soil food-
webs, measurements of population size, and estimates of
natural mortality rates. At equilibrium, the total energy
consumed should balance mortality and predation, and
therefore it should be possible to derive interaction strength
by deduction.

There are also several examples of indirect approaches
for inference of interaction strength. For example, preda-
tor–prey body-size ratio is often used to estimate per capita
effect of predators on their prey [47], or to derive this effect
from metabolic scaling relationships [48]. In addition to
population size, interaction strength has also been associ-
ated with the frequency at which actual interactions occur.
Neutral models of interactions were shown to predict
relatively well the interaction strength between pairs of
species within trophic guilds based on their local popula-
tion sizes [49,50]. In neutral models, the probability of
species interacting together is proportional to the product
of their relative abundances. Neutral forbidden links arise
because two rare species are very unlikely to interact
[41]. The network properties are consequently the direct
result of frequency distributions of abundance of the dif-
ferent guilds, which in turn respond to changing environ-
mental conditions [43,44]. Increasing understanding of
environmental-driven non-random changes in network
structure will allow the probabilities of interaction to be
adjusted and more accurate predictions to be generated.

The asymmetry of interactions is the most understudied
of the factors affecting interaction probabilities. Most model-
ing studies use a constant across all species to represent
consumption inefficiency [51], but theoretical or empirical
support for such an assumption is limited. Experimental
studies are also usually conducted in a single direction;
measuring the effect of predator removal on the prey bio-
mass in the field [52] is often achieved, but it is more
challenging to evaluate the effect of prey removal on the
predator (but see [53]). The asymmetry of interactions has
also been related to co-evolutionary dynamics [54], and it is
likely that further indirect inferences of asymmetry will rely
on phylogenetic relationships.

Based on the above, we list six simple hypotheses to guide
inference about probabilities of interaction between pairs of
species (Figure 2). To illustrate the implementation of these
hypotheses, we apply one of them (i.e., increasing probabili-
ty of predation with increasing predator–prey body-size
ratio) to infer probability of interaction for the subsets of
consumer species within each of our two examples (Seren-
geti mammals and Cuban fish) (see Figure I in Box 2).

Testing inferences about interactions
The usefulness of a theoretical model is partly dependent
on it being successfully tested. However, inferences of
354
biotic interactions by models are not easily tested because
reliable data on absence of interactions are generally
unavailable. Similar problems exist in the literature on
modeling species distributions [4,55], with the conse-
quence that inferences of interactions must necessarily
be interpreted as potential rather than realized. Indeed,
observed interactions will typically constitute a small sub-
set of all realized interactions, and these are themselves a
subset of all potential interactions within a given species
pool. The consequence is that false positives (interactions
predicted but not recorded) might not be an error at all;
they often characterize existing but undetected interac-
tions, or potential interactions that have yet not been
realized. Although the meaning of false positives is often
difficult to ascertain, false negatives (observed interactions
not predicted by the model) provide a clear indication that
the inferences by the models are inaccurate. Our imple-
mentations of the proposed framework show how reduc-
tions of false positives are achieved by stepwise
implementation of the proposed framework up to estimat-
ing the probabilities of interaction based on one rule (i.e.,
predator–prey body-size ratios), while false negatives re-
main stable and at low levels (see Figure II in Box 2).

In most cases, inferred interactions will never be ob-
served for several reasons, including low detectability, low
abundances, dispersal barriers, and lack of overlap be-
tween ecological niches of the two species [19]. Detection
of interactions will increase if sufficiently coarse spatial
and temporal scales of observation are allowed. Likewise,
non-interacting species might start interacting if novel
circumstances prompt them to do so (e.g., stochastic long
distance dispersal enabling contact of otherwise disjoint
species; reshuffling of species geographic distributions due
to shifts in the distributions of ecological niches).

In other cases, species might co-occur but interact only
in some parts of their ranges. This is the case of Australian
tiger sharks, whose diet shifts geographically, selecting
different (but equally available) prey species in different
locations [56]. The Cuban Coral reef network example
shows a substantial number of predicted links below the
diagonal for which there is no empirical evidence (see
Figure II,J in Box 2). The question arises as to whether
these false positives could be realized in other locations; an
issue gaining particular prominence for the study of the
study of novel ecological communities under climate
change [57].

The sheer number of potential interactions that exist in
nature poses additional difficulties to testing inferences of
interactions with experimental or observational
approaches. Nevertheless, not all links affect properties
of interactions networks equally and there is scope for
simplification if only the most relevant species in the
network, for example those with more or stronger connec-
tions, are examined [22].

Concluding remarks
We have proposed a framework for inferring biotic inter-
actions based on stepwise removal of forbidden links and
calculation of the probabilities of interaction for the
remaining links. With such a process one is able to estab-
lish the backbone of an interactions network occurring in a
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given regional species pool. The pruning of the network is
made using rules derived from the analysis of functional
traits, phylogenies, and geographical proxies. To provide
an illustration we implemented the framework with food-
webs in two ecosystems: terrestrial (the Serengeti) and
marine (the Cuban coral reef). We have demonstrated how
basic understanding of traits enables accurate predictions
of the overall structure of the food-webs with startlingly
regional species pools (Figure 1 and Box 2). While further
testing of these ideas is warranted, several conceptual
challenges remain. Among them, it will be crucial to look
more closely at how emerging properties such as mean
trophic level, modularity, and nestedness change along the
pruning sequence. This issue is reminiscent of the intense
debates in the food-web literature about the impact of
sampling intensity on network properties [18]. Full under-
standing of the web of life seems distant, but sequentially
building super-networks or meta-webs of biotic interac-
tions networks will help in unraveling key interactions and
their potential effects on the distribution of life on earth.
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Nature et Technologies (FQRNT) programme. M.G.M. also acknowledges
support by a Marie Curie Intra-European Fellowship within the 7th
European Commission Framework Programme (FORECOMM). D.G.
received financial support from the Natural Sciences and Engineering
Research Council (NSERC) and the Canada Research Chair program.

References
1 Brown, J.H. and Lomolino, M.V. (1998) Biogeography, Sinauer Press
2 Diniz-Filho, J.A.F. et al. (2013) Darwinian shortfalls in biodiversity

conservation. Trends Ecol. Evol. 28, 689–695
3 Whittaker, R.J. et al. (2005) Conservation biogeography: assessment

and prospect. Divers. Distrib. 11, 3–23
4 Peterson, A.T. et al. (2011) Ecological Niches and Geographical

Distributions, Princeton University Press
5 Dodds, W.K. and Nelson, J.A. (2006) Redefining the community: a

species-based approach. Oikos 112, 464–472
6 Pearson, R.G. and Dawson, T.E. (2003) Predicting the impacts of

climate change on the distribution of species: are bioclimate
envelope models useful? Global Ecol. Biogeogr. 12, 361–371

7 Benton, M.J. (2009) The Red Queen and the Court Jester: species
diversity and the role of biotic and abiotic factors through time. Science
323, 728–732

8 Loreau, M. (2010) From Populations to Ecosystems: Theoretical
Foundations for a New Ecological Synthesis, Princeton University Press
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