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This  study  aims  to develop  and  propose  a methodological  approach  for  montado  ecosystem  mapping  using
Landsat  8  multi-spectral  data,  vegetation  indices,  and  the  Stochastic  Gradient  Boosting  (SGB)  algorithm.
Two Landsat  8  scenes  (images  from  spring  and  summer  2014)  of  the  same  area  in  southern  Portugal  were
acquired.  Six  vegetation  indices  were  calculated  for  each  scene:  the  Enhanced  Vegetation  Index  (EVI),  the
Short-Wave  Infrared  Ratio  (SWIR32),  the  Carotenoid  Reflectance  Index  1  (CRI1),  the Green  Chlorophyll
Index  (CIgreen),  the Normalised  Multi-band  Drought  Index  (NMDI),  and  the  Soil-Adjusted  Total  Vegetation
Index  (SATVI).  Based  on  this  information,  two  datasets  were  prepared:  (i)  Dataset  I only  included  multi-
temporal  Landsat  8  spectral  bands  (LS8),  and  (ii)  Dataset  II included  the  same information  as  Dataset  I
plus  vegetation  indices  (LS8 +  VIs).  The  integration  of  the  vegetation  indices  into  the  classification  scheme
resulted  in  a significant  improvement  in the  accuracy  of Dataset  II’s classifications  when  compared  to
Dataset  I  (McNemar  test:  Z-value  =  4.50),  leading  to  a difference  of  4.90%  in  overall  accuracy  and  0.06  in the

Kappa  value.  For the montado  ecosystem,  adding  vegetation  indices  in  the  classification  process  showed  a
relevant  increment  in producer  and  user  accuracies  of  3.64%  and  6.26%,  respectively.  By using the variable
importance  function  from  the  SGB  algorithm,  it was  found  that  the  six  most  prominent  variables  (from  a
total  of  24 tested  variables)  were  the  following:  EVI  summer;  CRI1  spring;  SWIR32  spring;  B6  summer;
B5  summer;  and  CIgreen summer.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

The so-called “montado” constitutes an agro-silvo-pastoral sys-
em dominated by cork oak trees (Quercus suber) and/or holm oaks
Q. [ilex] rotundifolia) presenting high levels of spatial variability in
ree densities, usually with an understory mosaic of annual crops,
rasslands, and shrublands (Joffre et al., 1999; Doorn et al., 2007).
his ecosystem covers an area of about 3.5 × 104 to 4.0 × 104 km2 in
he south-western part of the Iberian Peninsula, and is therefore of
reat relevance to the Mediterranean biogeographical region (Olea

nd San Miguel-Ayanz, 2006). Montado is described as a multifunc-
ional system, as it supports a variety of goods and services that are
alued by society today (Surová et al., 2011). Aside from cork and
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303-2434/© 2016 Elsevier B.V. All rights reserved.
firewood, this system also provides acorns and pasture for livestock
feeding, and other ecosystem services such as soil conservation,
carbon sequestration and biodiversity conservation (Bugalho et al.,
2009). Changes in montado landscapes are mainly related to envi-
ronmental constraints (e.g., soil type and hydrological conditions,
drought, and wildfires), ineffective land management, the vulner-
ability of the agricultural economy, and also modifications in the
organisation of farming labour (e.g., Godinho et al., 2014; Pinto-
Correia, 2000). Monitoring these changes is therefore a pressing
concern for society and governmental institutions, as well as for
the scientific community.

The availability of accurate and up-to-date spatial informa-
tion on the montado is crucial to understanding the patterns and
trends of this ecosystem. Consistent and regular montado land cover

information with high spatial resolution is required to support
the decision-making process regarding ecosystem management
and conservation. Established methods, such as field inventories
and aerial photographic interpretation, can be used for land cover
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Fig. 1. Study area.

Table 1
Spectral vegetation indices calculated from Landsat 8 to be used in this study.

Vegetation index Band formula Reference

Green chlorophyll index CIgreen = �NIR
�Green − 1 Gitelson et al. (2003)

SWIR32* SWIR32 = �SWIR2
�SWIR1 Guerschman et al. (2009)

Carotenoid reflectance index 1 CRI1 =
(

1
�Blue

)
−
(

1
�Green

)
Gitelson et al. (2002)

Enhanced vegetation index EVI = 2.5 ×
(

�NIR−�Red
1+�NIR+6×�Red−7×�Blue

)
Huete et al. (1997)

Normalized multi-band drought index NMDI = �NIR−(�SWIR1−�SWIR2)
�NIR+(�SWIR1−�SWIR2) Wang and Qu (2007)

Soil-adjusted total vegetation index SATVI =
(

�SWIR1−�Red
�SWIR1+�Red+L

)
× (1 + L) −

(
�SWIR2

2

)
Marsett et al. (2006)

Note: L = 0.5 was  applied in SATVI index. *SWIR1 and SWIR2 bands in the case of Landsat 8. Original configuration corresponds to SWIR2 and SWIR3 bands of MODIS sensor
(Guerschman et al., 2009).

Table 2
List of land cover classification categories.

Class code Class name Number of sample points

MO  Montado 420
EF  Eucalyptus forest 117
SL  Shrubland 221
PF  Pine forest 80
WT  Water 89
OG  Olive grove 266
IA  Irrigation agriculture 101
C/P  Dry crops/pastures 213

m
e
t
r

BS  Bare soil 

UB  Urban 

VI  Vineyards 

apping, but these tasks are often time-consuming, prohibitively
xpensive, and limited in their ability to provide spatially con-

inuous information over large territories (Xie et al., 2008). Using
emote sensing technology, land cover mapping can be gathered
81
80
235

utilising a reduced amount of field data, making it more cost-
effective (Rogan and Chen, 2004).
Landsat Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) sen-
sors have been collecting imagery data in the visible, near infrared



S. Godinho et al. / International Journal of Applied Earth Observation and Geoinformation 49 (2016) 151–162 153

Table  3
Confusion matrix (in percentage) obtained with the SGB algorithm applied to selected multi-seasonal Landsat 8 OLI multi-spectral bands (Dataset I).

Reference data User’s accuracy

MO  EF SL PF WT OG IA C/P BS UB VI Total

Classified data MO 18.2 0.7 0.9 0.4 0.0 2.4 0.2 0.6 0.0 0.0 1.0 24.4 74.59
EF  0.1 4.5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 90.00
SL  0.4 0.5 10.3 0.1 0.0 0.4 0.0 0.1 0.1 0.0 0.0 11.9 86.55
PF  0.1 0.3 0.1 2.9 0.0 0.1 0.0 0.0 0.0 0.0 0.1 3.6 80.56
WT  0.0 0.0 0.0 0.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0 4.7 100.0
OG  1.8 0.2 0.2 0.2 0.0 9.6 0.1 0.8 0.1 0.2 0.8 14.0 68.57
IA  0.1 0.0 0.0 0.0 0.0 0.0 4.9 0.1 0.0 0.0 0.0 5.1 96.08
C/P  0.8 0.0 0.1 0.1 0.0 0.6 0.1 9.2 0.9 0.1 0.3 12.2 75.41
BS  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.8 0.4 0.0 3.4 82.35
UB  0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.3 3.3 0.0 3.9 84.62
VI  0.5 0.0 0.0 0.1 0.0 0.6 0.0 0.2 0.0 0.1 10.3 11.8 87.29
Total  22.0 6.2 11.6 4.2 4.7 13.9 5.3 11.3 4.2 4.1 12.5 100

Producer’s accuracy 82.73 72.58 88.79 69.05 100.00 69.06 92.45 81.42 66.67 80.49 82.40
Overall accuracy 80.70 Kappa 0.78

Table 4
Comparisons of per-class kappa values obtained with KNN and SGB algorithms applied to Dataset I (LS8). Values in brackets represent the overall accuracy.

Class name KNN (74.90%) SGB (80.70%) Kappa improvement

Montado 0.59 0.67 0.09
Eucalyptus forest 0.78 0.89 0.12
Shrubland 0.79 0.85 0.06
Pine  forest 0.78 0.80 0.02
Water  1.00 1.00 0.00
Olive  grove 0.53 0.63 0.11
Irrigation agriculture 0.96 0.96 0.00
Dry  crops/pastures 0.66 0.72 0.06
Bare  soil 0.79 0.82 0.02
Urban  0.76 0.84 0.08
Vineyards 0.79 0.85 0.07
Mean  0.77 0.82 0.06
Std.  deviation (SD) 0.13 0.11 0.04

Table 5
Confusion matrix (in percentage) obtained with the SGB algorithm applied to selected multi-seasonal Landsat 8 OLI multi-spectral bands and Vegetation Indices (Dataset II).

Reference data User’s accuracy

MO EF SL PF WT OG IA C/P BS UB VI Total

Classified data MO  19.0 0.4 1.2 0.3 0.0 1.9 0.0 0.3 0.0 0.0 0.4 23.5 80.85
EF  0.1 5.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 92.59
SL  0.4 0.4 10.3 0.2 0.0 0.3 0.0 0.1 0.1 0.0 0.0 11.8 87.29
PF  0.0 0.3 0.0 3.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 3.6 86.11
WT  0.0 0.0 0.0 0.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0 4.7 100.0
OG  1.6 0.1 0.1 0.2 0.0 10.9 0.0 0.4 0.2 0.0 0.8 14.3 76.22
IA  0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.1 0.0 0.0 0.0 5.2 98.08
C/P  0.4 0.0 0.0 0.1 0.0 0.4 0.1 9.9 0.6 0.1 0.2 11.8 83.90
BS  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 3.1 0.3 0.0 3.6 86.11
UB  0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.2 3.6 0.1 4.1 87.80
VI  0.5 0.0 0.0 0.0 0.0 0.2 0.1 0.2 0.0 0.1 10.9 12.0 90.83
Total  22.0 6.2 11.6 4.2 4.7 13.9 5.3 11.3 4.2 4.1 12.5 100

Producer’s accuracy 86.36 80.65 88.79 73.81 100.00 78.42 96.23 87.61 73.81 87.80 87.20
Overall accuracy 85.60 Kappa 0.84

Table 6
Comparison of SGB classification accuracies (per-class kappa values) obtained using Dataset I (LS8) and Dataset II (LS8 + VIs). Values in brackets represent the overall accuracy.

Class Name LS8 (80.70%) LS8 + VIs (85.60%) Kappa improvement

Montado 0.67 0.75 0.08
Eucalyptus forest 0.89 0.92 0.03
Shrubland 0.85 0.86 0.01
Pine  forest 0.80 0.86 0.06
Water 1.00 1.00 0.00
Olive grove 0.63 0.72 0.09
Irrigation agriculture 0.96 0.98 0.02
Dry  crops/pastures 0.72 0.82 0.10
Bare  soil 0.82 0.86 0.04
Urban 0.84 0.87 0.03
Vineyards 0.85 0.90 0.05
Mean 0.82 0.87 0.04
Std.  deviation (SD) 0.11 0.08 0.03



154 S. Godinho et al. / International Journal of Applied Earth Observation and Geoinformation 49 (2016) 151–162

ity (tc

(
n
a
e
E
n
w
(
t
m

Fig. 2. Overall accuracy levels for tested tree complex

NIR), and shortwave infrared (SWIR) portions of the electromag-
etic spectrum, making them appropriate for vegetation studies
cross a wide range of environments (Cohen and Goward, 2004; Jia
t al., 2014; Li et al., 2014). Compared with its predecessors (TM and
TM+), Landsat 8 OLI has some new features, of which the evident
arrowing of the NIR band (0.845–0.885 �m)  to avoid the effects of
ater vapour absorption at 0.825 �m that occurs in ETM+ band 4
0.775–0.900 �m),  and the radiometric quantisation of 16 bits are
wo of the most relevant improvements. These technical advance-

ents mean the Landsat 8 OLI performance levels are superior to
) and learning rate (lr) values using bag fraction 0.50.

those of the previous Landsat sensors (Irons et al., 2012; Roy et al.,
2014).

Given the land cover characteristics and the predominance of
a dry climate and soil conditions, the Mediterranean landscape
presents low levels of inter-class separability (Berberoglu et al.,
2000). In these types of landscapes, bare soils have a significant
level of spatial occurrence, presenting high reflectance that can

mask reflected components from sparse vegetation (Berberoglu
et al., 2007; Rodriguez-Galiano et al., 2012). As a Mediterranean
ecosystem, obtaining montado cover maps constitutes a difficult
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ig. 3. Distribution of spectral vegetation indices values between land cover cate
O—montado;  OG—olive grove; PF—pine forest; Sl—shrubland, UB—urban; VI—vine

nd complex task due to the spatial fuzziness caused by its tree

ensity variability (Doorn and Pinto-Correia, 2007).

Several approaches have been tested and applied to deal with
hese constraints in order to increase the separability between land
. Land cover code: BS—bare soil; C/P—Dry crops/pastures; EF—eucalyptus forest;

.

covers that present similar spectral behaviour, such as the inte-

gration of multi-seasonal images and vegetation indices into the
classification process (e.g., Carrão et al., 2008; Rodriguez-Galiano et
al., 2012; Senf et al., 2015). Using multi-seasonal images improves
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he differentiation between vegetation types thanks to their abil-
ty to capture variations in their phenological state (Julien et al.,
011; Rodriguez-Galiano et al., 2012). The integration of vegetation

ndices into classification models is useful to attain reliable spa-
ial and temporal comparisons of variations in canopy structural,
henological, and biophysical parameters, which can facilitate
egetation inter-class separability (Huete et al., 2002). However,
he accuracy of these indices in quantifying vegetation parame-
ers is affected by their sensitivity to atmospheric water vapour
ontent, particularly those that use the NIR band in their com-
utation (Kerekes, 1994). Recently, Li et al. (2014) reported that,
epending on the land cover type, there are subtle differences in
egetation indices derived from ETM+ and OLI sensors. Therefore,
urther research is needed to evaluate the reliability of the veg-
tation indices resulting from the new Landsat sensor in specific
emote sensing applications, such as evaluating their performance
n improving land cover classifications in Mediterranean environ-

ents.
In the past decade, machine learning algorithms such as Support

ector Machines (SVM) (Cortes and Vapnik, 1995), Random For-
st (RF) (Breiman, 2001), and Stochastic Gradient Boosting (SGB)
Friedman, 2002) have gained prominence in improving the per-
ormance of classification and regression processes in the remote
ensing field (Huang et al., 2002; Lawrence et al., 2004; Rodriguez-
aliano et al., 2012). Nevertheless, to the best of our knowledge,
nly a few studies have reported applications of SGB for remote
ensing classification purposes (Chirici et al., 2013; Lawrence et al.,
004). Therefore, more research is needed to assess the potential
nd effectiveness of the SGB algorithm for land cover mapping,
specially using Landsat 8 OLI data.

Despite the environmental and socio-economic importance of
ontado and its spatial distribution in the Mediterranean Basin,

he development of remote sensing-based approaches for mapping
his ecosystem with the use of medium spatial and spectral reso-
ution imagery is rarely addressed in scientific literature (Carreiras
t al., 2006; Godinho et al., 2015; Joffre and Lacaze, 1993). It is as
uch that this study aims to develop and propose a methodologi-
al approach for montado ecosystem mapping using a classification
cheme which integrates Landsat 8 OLI multi-spectral data, vege-
ation indices, and an advanced machine learning algorithm. This
tudy addresses three research goals directly:

 Assessing the overall suitability and effectiveness of Landsat 8
OLI imagery for montado ecosystem mapping;

 Assessing the improvement of montado classification accuracy by
adding vegetation indices as proxy variables of plants physiolog-
ical processes;

 Evaluating the performance of the SGB classifier for montado land
cover classification.

. Material and methods

.1. Study area and data

This study was  conducted in southern Portugal (Fig. 1), a region
ith a markedly Mediterranean climate characterised by hot and
ry summers (August: 31–32 ◦C Tmax) and wet and cold win-
ers (January: 6–7 ◦C Tmin). Mean annual precipitation varies from
50 mm to 650 mm.  The elevation range varies from 40 m to 645 m,
nd the mean slope is 3.52◦, corresponding to a low roughness zone.

he study area, covering roughly 8567 km2, is mainly located in
he biogeographic Luso-Extremadurense Province. Montado cov-
rs about 44.8% of the study area, being the predominant land use
ystem in the region, followed by arable land (27.9%).
Fig. 4. Results of overall accuracy.

Two Landsat 8 images of the same area in southern Portugal
were acquired in order to develop a multi-seasonal-based classifi-
cation scheme. One image was taken in spring (15th May  2014) and
the other in summer (19th August 2014), to ensure inter-class sep-
arability benefits from the phenological variation of the vegetation
cover (Rodriguez-Galiano et al., 2012). May  and August represent
peaks in productivity and are also prominent periods in the phe-
nological development of the major vegetation types in the study
area (e.g., Vaz et al., 2010; Senf et al., 2015). Landsat 8 imagery
(path 203, row 33) entirely covers the study area. The processing
level of the images corresponds to the “Standard Level 1 Terrain
Corrected” (L1T). Both are cloud-free images. For the image clas-
sification procedure, only OLI bands 2 (Blue), 3 (Green), 4 (Red), 5
(NIR), 6 (SWIR1) and 7 (SWIR2) were used in this study.

2.2. Satellite data pre-processing

An atmospheric correction was  applied to both images on
selected bands, using the FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) method. FLAASH is an ENVI
atmospheric correction algorithm based on MODTRAN4 radia-
tive transfer code (Berk et al., 2002). Before running the FLAASH
algorithm the images were radio-metrically calibrated using the
“Radiometric Calibration” ENVI tool which corrects Digital Num-
bers (DN) to radiance values. The radiance images were then
atmospherically corrected using MODTRAN4 code, resulting in sur-
face reflectance images. In the FLAASH toolbox the “Mid-Latitude
Summer” and “Rural” input parameters were selected, respectively,
as atmospheric and aerosol models. These two parameters were
selected because they are the most appropriate atmospheric and
aerosol models for this study region.

2.3. Vegetation indices

Six vegetation indices were calculated from the selected Landsat
8 multi-spectral bands of both the spring and summer images: the
Enhanced Vegetation Index (EVI), the Short-Wave Infrared Ratio
(SWIR32), the Carotenoid Reflectance Index 1 (CRI1), the Green
Chlorophyll Index (CIgreen), the Normalised Multi-band Drought

Index (NMDI), and the Soil-Adjusted Total Vegetation Index (SATVI)
(Table 1). These vegetation indices were selected based on their
respective sensitivity and effectiveness for monitoring vegeta-
tion cover and for retrieving vegetation parameters in semi-arid
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Fig. 5. Comparison of land cover products derived from SGB classification

nvironments, in which water scarcity, soil background effects, and
he predominance of senescent plant species are the main charac-
eristics (e.g., Hill, 2013; Marsett et al., 2006; Sauceda et al., 2008).

.4. Training and validation data

A dataset including 1903 sample points covering the study area
as produced using a stratified approach to ensure a thorough

nd representative reference dataset made up of eleven land cover
ategories (Table 2).

All of these points were chosen by photo-interpretation using
 set of high-resolution (0.5 m)  true-colour orthophotomaps (pro-
uced in 2005 by IGP—the Portuguese Geographic Institute), which

s a well-established method for collecting reference land cover
ata (e.g., Rodriguez-Galiano and Chica Olmo, 2012), and also by

sing the true colour composite of the summer Landsat 8 OLI

mage. This true colour composite was generated by merging
he panchromatic band (band 8) with the multi-spectral bands
o produce a pan-sharpened image which increases the level of
ed to Dataset I (LS8)—on the left—and Dataset II (LS8 + VIs)—on the right.

spatial detail and, therefore, the photo interpretation process.
Of the selected 1903 sample points, 174 were labelled with
uncertainties during the photo-interpretation process (mon-
tado = 53, eucalyptus forest = 18, pine forest = 11, shrubland = 24,
olive grove = 37, and vineyards = 31). Hence, to guarantee the over-
all quality of the final dataset of sample points, a field validation was
performed in June 2014 to check all the points that presented less
certitude in their labelling via photointerpretation. From the field
verification it was detected that 47 sample points (montado = 12;
eucalyptus forest = 7, pine forest = 3, shrubland = 9, olive grove = 8,
and vineyards = 8) had indeed been mislabelled during the photo-
interpretation task. Therefore, all of these points were replaced in
the main dataset by new correct samples.

For each sample point, vegetation indices and reflectance values
from the 12 bands (6 spring and 6 summer ones) were extracted
from both Landsat 8 OLI images. Considering that the available

pool of sample points for this research was  restrictive (1903), we
avoided splitting the dataset into training and validation sets. This
was because each sample point was  needed for model building, and
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ig. 6. Relative importance of each one of the 24 variables used in the SGB classifi-
ation model applied to Dataset II. SUM: summer, SPR: spring.

lso because the size of the validation set may  have limited utility
s a judge of the modelı́s performance (Kuhn and Johnson, 2013).
herefore, all available sample points were used to tune, train and
alidate SGB classification models by applying a repeated (three
imes) 10-fold cross-validation resampling method, which is con-
idered to be an appropriate approach when large amounts of data
re not available (Kuhn and Johnson, 2013).

.5. Image classification using stochastic gradient boosting

SGB is a hybrid machine learning algorithm that combines both
he advantages of bagging and boosting procedures (Friedman,
001, 2002). Specifically, at each SGB iteration, a simple base

earner (decision tree) is built using a random sub-sample of
he training dataset (without replacement) producing substantial
mprovements to the model’s accuracy. The boosting process in the
GB model is based on the steepest gradient algorithm in order
o increase emphasis on misclassified training data that are close
o their correct classification, rather than the worst classification
ata (Lawrence et al., 2004). Several advantages of using the SGB
lgorithm have been highlighted, including its low level of sensi-

ivity to outlier effects, the ability to deal with inaccurate training
nd unbalanced datasets, the stochastic characteristic in modelling
on-linear relationships, robustness in dealing with interaction
ffects among predictors, and also the capability to quantify the
bservation and Geoinformation 49 (2016) 151–162

importance of variables (Friedman, 2001). Moreover, the stochastic
component of the SGB algorithm is a powerful element in improv-
ing classification accuracy, as well as in reducing the occurrence of
over-fitting (Friedman, 2002).

Analytically, the SGB algorithm involves a parameter-tuning
process that maximises predictive accuracy. These parameters are:
(i) bag fraction (bf), which is the random fraction of the training data
used to perform each classification tree; (ii) tree complexity (tc),
which represents the number of splits that should be performed in
each tree; (iii) learning rate (lr), which determines the contribution
of each tree to the growing model and helps to control over-fitting
by controlling the gradient steps; and (iv) the number of trees (nt)
(Elith et al., 2008). To determine the optimal combination of these
parameters in the interests of achieving the highest overall model
accuracy, a set of SGB models were tested using different values
for bf (0.50, 0.60, and 0.75), tc (3, 5, 9, and 11), lr (0.001, 0.01,
0.05, and 0.07), and nt (50–1500). Optimal values for SGB-tuning
parameters were selected for two different datasets: (i) using solely
multi-seasonal Landsat 8 OLI spectral bands (Dataset I: LS8), and (ii)
adding vegetation indices to the multi-seasonal Landsat 8 OLI spec-
tral bands (Dataset II: LS8 + VIs). For both Datasets, the optimal bag
fraction value was  assessed testing tc = (3, 5, 9, 11), lr = 0.01, and
nt ranging from 50 to 1500 trees, in order to reduce the number
of candidate models. Therefore, a total of 48 candidate SGB mod-
els were evaluated through the gbm and caret R packages (Kuhn,
2014; Ridgeway, 2013) implemented in the R statistical software
(R Development Core Team, 2014).

2.6. Performance assessment

The performance of the SGB algorithm was compared to the K-
Nearest Neighbour (KNN) classifier, which is one of the simplest,
and yet widely used, instance-based learning algorithms for remote
sensing applications (e.g., Budreski et al., 2007; Març al et al., 2005).
KNN classification was  performed using the caret package and the
knn method (Kuhn and Johnson, 2013). This method only needs to
tune the k parameter, the number of neighbours. The optimal value
of k was determined using the same cross-validation resampling
approach applied in the SGB procedure (Section 2.4). Confusion
matrices resulting from a 10-fold cross-validation process were
used to provide an estimation of SGB (Dataset I and II) and KNN
(Dataset I) classifications accuracy. For each matrix, four traditional
accuracy assessment measures were calculated: overall classifica-
tion accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA),
and the Kappa coefficient (K) (Congalton and Green, 2009). In addi-
tion, to illustrate the superiority of one algorithm over another, the
statistically significant difference between KNN and SGB  classifica-
tions was  evaluated using McNemarı́s test (Foody, 2004). Based on
this non-parametric test, two classifications may be considered to
be of different accuracy at the 95% level of confidence if |Z| > 1.96.
This test was  also used to assess the significance of differences in
adding vegetation indices in the classification process (Dataset I vs
Dataset II).

To investigate whether separate vegetation indices dif-
fer between land cover types, several Kruskal–Wallis and
Tukey–Kramer tests (post-hoc pairwise comparisons) were per-

formed. This approach is useful for analysing the degree of
dissimilarity between vegetation indices across land cover types.
This is, therefore, an indirect way  of measuring the importance of
these indices for the separability of land cover categories.
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. Results and discussion

.1. Identifying the optimal SGB parameters

Based on the repeated 10-fold cross-validation results, the
ighest overall accuracy level was achieved with a bag fraction
alue of 0.50 for both Dataset I and II. In fact, no major differ-
nces were observed between the overall accuracy determined
or the three tested bag fractions (Dataset I: bf0.50 = 80.70%;
f0.60 = 80.59%; bf0.75 = 80.64%; Dataset II: bf0.50 = 85.60%;
f0.60 = 85.48%; bf0.75 = 85.53%). As shown in Fig. 2, the tuning
rocedure determined that the highest overall accuracy levels
ere achieved when tc = 11, lr = 0.05, and nt = 1200 and when tc = 9,

r = 0.07, and nt = 500 parameter values were used for Dataset I
81.52% and 81.83%, respectively). Regarding Dataset II, the highest
verall accuracy levels were obtained when tc = 11, lr = 0.01, and
t = 1050 and when tc = 11, lr = 0.05, and nt = 1050 parameter values
ere used (85.60% and 85.12%, respectively). However, the overall

ccuracy levels achieved by both 0.05 (Dataset I and II) and 0.07
Dataset I) learning rates present a degree of instability (peaks and
alleys in the tc curves) in the classification accuracies for each tree,
hich may  have important practical implications related to SGB

lassification performance (Elith et al., 2008). According to Elith
t al. (2008) it is preferable to use slower learning rates (i.e., low
alues of lr) to control this instability in the models’ accuracy. The
esults shown in Fig. 2 reveal that a more stable model for Dataset
, which also presented a high overall accuracy level (80.70%) was
chieved when lr = 0.01 was used. It can therefore be concluded
hat for the data used in this study, lr = 0.01 is the optimal value for
his SGB parameter for both Dataset I and II. In summary, the best
ombination of tuning parameters achieved during the tests, i.e.,
f = 0.50, lr = 0.01, and tc = 11, were used to produce the best SGB
lassification model for Dataset I and II.

.2. Effectiveness of Landsat 8 OLI multi-spectral imagery for
ontado ecosystem mapping

The SGB classification performed only using the selected multi-
easonal Landsat 8 OLI spectral bands (Table 3) showed a moderate
verall agreement and good accuracy (OA = 80.70%; K = 0.78),
emonstrating that this sensor is suitable for generating land
over maps for these Mediterranean ecosystems. Regarding the
GB performance, McNemarı́s test clearly points to the signifi-
ant improvements shown by SGB classification compared to the
est KNN classification (Z-value = 5.28). The results included in
able 4 illustrate the per-class Kappa index and the difference
etween SGB and KNN classifications. One may observe that the
GB algorithm generally performs better than the KNN classifier,
resenting an overall accuracy improvement of 5.80% and an aver-
ge Kappa increase of 0.06 (SD = 0.04). At the land cover/vegetation
lass level, the montado ecosystem classification derived from the
GB algorithm was reasonably accurate (74.59% and 82.73% of
ser and producer accuracy, respectively) (Table 3). It can be seen,
hrough the confusion matrix, that some areas of olive groves,
ry crops/pastures, and vineyards were classified as montado, and
ice versa. These errors occurred due to the spatial variability
f tree density in the montado ecosystem, thereby contributing
o a lower inter-class separability between these land cover cat-
gories. Some low-density montado areas (tree cover between
0% and 30%) were misclassified by having been mapped as dry
rops/pastures and vineyards. In these areas, the vegetation cover
ensity is generally sparse and, therefore, the high reflectance of

he bare soil may  have masked small components reflected from
parse vegetation (Berberoglu et al., 2000; Rodriguez-Galiano et
l., 2012). On the other hand, in dense montado areas (tree density
50%), classification confusions may  occur with olive groves, with
bservation and Geoinformation 49 (2016) 151–162 159

certain limitations being present when only the original Landsat 8
OLI bands are used in the classification model.

3.3. Assessing how montado classification accuracy may  be
improved by adding vegetation indices to the classification scheme

The Kruskal–Wallis tests revealed that each vegetation index
value was significantly different between land cover types
(p < 0.001 for all vegetation indices). Water and irrigation agricul-
ture were intentionally excluded from this analysis due to their high
and implicit separability potential when compared to the remain-
ing land cover types. The boxplot graphs (Fig. 3) clearly show the
high degree of dissimilarity of the vegetation indices between land
cover categories, which is a desirable factor in order to increase
their separability (Tolpekin and Stein, 2009). Among the indices,
the dissimilarity patterns related to EVI (summer), CRI1 (spring),
and CIgreen (summer) demonstrate their usefulness in differenti-
ating the fractional cover of photosynthetic vegetation (e.g., Hill,
2013). The differentiation of pine forest, eucalyptus forest, mon-
tado, and vineyards from the remaining categories became evident
when the EVI (summer) index was used (Fig. 3a). During the sum-
mer  season, the contrast between herbaceous layers and tree layers
is more obvious than it is in spring because the herbaceous layer is
already dry while the tree layer is still green (Carreiras et al., 2006).
In such circumstances, NIR, red and blue reflectance values differ
significantly between land cover types, where high NIR and gen-
erally low red and blue reflectance values can be found in green
vegetation (e.g., pine, eucalyptus, montado and vineyards) (Jones
and Vaughan, 2010). Therefore, the results reported here clearly
suggest that the EVI index (which incorporates NIR, red and blue
bands) was far more useful for increasing the separability between
land cover types in the summer season, in particular for distinguish-
ing herbaceous and shrubland cover from the tree layer. In addition,
EVI was also suitable for increasing the separability between olive
grove and montado areas. Both land cover types constitute one of
the most confused pairs when only using the original Landsat 8 OLI
bands (Table 3).

The use of leaf pigment indices such as the CRI1 and CIgreen

resulted in an increase in class separability. These vegetation
indices were extremely useful, for example, for distinguishing
montado from vineyards (CRI1) and from olive groves (CIgreen),
as well as for enhancing the differences between eucalyptus and
pine forests (Fig. 3b and d). However, neither index was suitable
for differentiating urban-crops/pastures and urban-bare soils land
cover pairs (Tukey–Kramer pairwise comparisons show p > 0.05).
To improve the differentiation between such land cover classes,
further auxiliary information could be integrated into the classifi-
cation procedure, such as textural information or digital elevation
models (Rodriguez-Galiano and Chica Olmo, 2012). Several authors
(e.g., Dash et al., 2007; Sauceda et al., 2008) have reported that
leaf pigment content (e.g., chlorophylls and carotenoids) in arid
and semi-arid landscapes vary from season to season and between
vegetation types, thereby providing valuable information that may
enhance land cover spectral differences.

The contrasting behaviour presented by the SWIR32 and SATVI
indices (Fig. 3c, e, and f), which are both short-wave infrared-
derived indices, emphasises their effectiveness in dealing with
non-photosynthetic vegetation, bare soil, and green vegetation
fractions (Guerschman et al., 2009; Hill, 2013; Marsett et al., 2006).
High SWIR32 index (spring and summer) values were found mainly
in urban areas, bare soils, and vineyards. The dissimilarity between
these three land cover types was  significant (p < 0.001). However,

the spectral difference between urban areas and bare soils was
much higher in spring than in summer (Fig. 3c and f), because bare
soils are covered by grass in spring (Rodriguez-Galiano et al., 2012).
The SATVI index was useful for distinguishing dry crops/pastures,
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ontado areas, and shrubland from the other categories by min-
mising soil spectral signal effects, which constitute a particular
eature of this index (Marsett et al., 2006). Finally, the inclusion of
he NMDI index in the classification model also proved useful for
upporting a more effective differentiation of land cover classes.
iven the water scarcity of the Mediterranean region, soil and veg-
tation moisture are very important factors in determining the
pectral behaviour of land cover types. Bare soils may  have sim-
lar reflectance features to urban areas and similar NIR reflectance
o dry crops/pastures (Berberoglu et al., 2000). However, the NMDI
ndex has the capacity to quantify the water content of soils and
egetation, where high values of NMDI indicate the presence of
ry bare soils (Wang and Qu, 2007). Sparsely vegetated areas, such
s vineyards and some montado areas (with tree density 10–30%)
ere distinguished from bare soils and urban areas when the sum-
er  NMDI index was included (p < 0.001). As reported by Wang and
u (2007), using the NMDI index may  be effective for detecting

ignificant differences in vegetation moisture. In fact, the differen-
iation between shrubland and the remaining vegetation classes in
his study was evident (p < 0.001) given the extremely low NMDI
alue observed.

Fig. 4 shows the results obtained by applying the SGB algorithm
o Dataset I (LS8) and Dataset II (LS + VIs). As may  be observed, the
ighest classification accuracy level was achieved when vegetation

ndices were used in combination with the multi-seasonal Landsat
 OLI bands, attaining an overall accuracy level of 85.60%.

Table 5 illustrates the confusion matrix resulting from the 10-
old cross-validation procedure for the accuracy assessment of
he SGB model when vegetation indices were included in the
lassification process. Overall, strong agreement and high lev-
ls of accuracy (OA = 85.60% and K = 0.84) were observed. For the
and cover/vegetation class level, all classes also showed a strong
greement and a good accuracy (UA >76%). Regarding the mon-
ado ecosystems, the results were highly positive (PA = 86.36%;
A = 80.85%). The combination of vegetation indices with multi-

pectral bands provided the best classification performance, with
verall accuracy and the Kappa coefficient increasing by 4.90% and
.06, respectively, when compared with the same accuracy mea-
ures obtained by applying SGB to the Landsat 8 OLI multi-spectral
ands (Tables 3 and 5).

Integrating vegetation indices into the classification model
esulted in significant improvements to accuracy levels for
he Dataset II classifications when compared with Dataset I
Tables 3 and 5) (McNemar’s test: Z-value = 4.50), leading to dif-
erences in the producer accuracy values for olive groves (9.36%),
ucalyptus forest (8.07%), and urban areas (7.31%). With regard
o user accuracy results, a significant increase was  also observed,

ainly for dry crops/pastures (8.49%), olive groves (7.65%), and
ontado (6.26%). In addition, the estimated per-class kappa values

lso demonstrated that these three land cover types were classi-
ed better when using Dataset II, showing a kappa value increase
f 0.10, 0.09, and 0.08, respectively (Table 6). These results contrast
ith those obtained by Li et al. (2011), who argued that vegetation

ndices had a limited role in improving overall classification perfor-
ance levels. For instance, by performing a visual interpretation of

he resulting SGB classification maps derived from both Datasets I
nd II, it can be seen that in the first case (Dataset I-derived), some
ontado patches were classified as dry crops/pasture areas. Never-

heless, this misclassification did not occur when using Dataset II,
hich included a combination of selected vegetation indices (Fig. 5a

nd b).
Fig. 6 shows the relative contribution of the 24 variables used,
nd it is clear that vegetation indices have the highest rela-
ive importance when it comes to differentiating between land
over/vegetation classes. Based on these results, EVI, CRI1, SWIR32,
Igreen, SATVI, and NMDI ranked in the top 10 most significant
bservation and Geoinformation 49 (2016) 151–162

variables for classification, with EVI (Summer), CRI1 (Spring), and
SWIR32 (Spring) being the three most prominent ones. As reported
by Dash et al. (2007), the results obtained in this study support the
conclusion that data acquired in the summer have a greater differ-
entiating element than data acquired in the spring. In fact, seven
variables from the top 10 of those most significant for classification
were sourced from summer data (Fig. 6).

4. Conclusions

The classification of the Landsat 8 OLI imagery combined with
vegetation indices as ancillary information was performed using
an SGB machine-learning algorithm. Good levels of accuracy were
obtained for both LS8 and LS8 + VIs products (80.70% and 85.60%,
respectively) by using this methodological approach. It has been
demonstrated that SGB has the capability for producing accurate
models using remote sensing data covering a complex landscape
such as the Mediterranean region. Moreover, the importance that
the SGB tuning parameter procedure had on the results obtained
in this study confirms the significance of selecting the best com-
bination of parameters, given that the parameterisation process is
image data-driven.

The classification accuracy of the thematic maps produced with
the use of multi-seasonal Landsat 8 OLI spectral bands increased
significantly with the integration of vegetation indices into the
classification model. This methodological approach allowed for the
most suitable vegetation indices to be determined in order to map
montado ecosystems more accurately. As a result, for the mon-
tado category, the highest level of accuracy was obtained using the
dataset that combines both multi-spectral bands and vegetation
indices, yielding an average accuracy of 83.61% and an increase of
0.09 in Kappa value. The usefulness of vegetation indices as vari-
ables to differentiate land cover classification were highlighted
throughout the procedure adopted, where EVI (summer), CRI1
(spring), and SWIR32 (spring) vegetation indices were the most
useful, accounting for a combined relative importance of 32.53%. It
was also shown that this multi-seasonal approach may  significantly
enhance existing differences in the variations of phenological and
spatial features of vegetation classes between spring and summer,
and therefore be more useful in discriminating between classes of
vegetation. In short, the results provided by this study may  be of
great relevance to land cover classification in the Mediterranean.
It has been shown that the use of vegetation indices as a source of
ancillary information may  noticeably enhance the biophysical dif-
ferences between land cover/vegetation categories, and therefore
increase their spectral inter-separability.

The lack of accurate montado maps describing the ecosystem’s
spatial-temporal distribution limits the implementation of a com-
prehensive montado monitoring programme. Such information is
crucial to supporting decision-making in the implementation and
monitoring of land planning and management policies. This study
constitutes a first step towards the development of a broader long-
term montado research line that addresses the need to identify and
map  the spatial patterns of these ecosystems in southern Portugal
over recent decades by using current (Landsat 8 OLI) and previous
mission Landsat data (TM and ETM+ sensors).
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